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DETERMINATION OF THE DRAG ON OSCILLATING PLATES IN A FLUID" 

V.A. BUZHINSKII and I.M. MEL'NIKOVA 

Using an approximate approach /l/, methods of determining the vortex drag 
on plates undergoing harmonic oscillations in an incompressible fluid are 
considered. By means of this approach, the problem can be reduced to 
determining the velocity intensity coefficients (VIC's) on the edges of 
the plates and computing a certain integral over the boundary contour. 
Mathematically, the VIC'S are analogous to the stress intensity 
coefficients (SIC's) /2/ in destruction mechanics. The most important 
exact solutions and closed expressions for the VIC's are presented for 
the planar and the spatial problems. To obtain numerical solutions, a 
version of the direct boundary-element method (BEM) is developed. 
Examples of applications of the finite-element method (FEM) and the BEN 
to specific problems are given. Methods for improving the accuracy of 
the numerical solutions are proposed. The results of experimental 
investigations are presented and compared with the computations. 

1. Fozmdation of the prob2em. Consider the oscillations of a plate in an incompressible 
fluid at rest at long distances. We introduce the following notation: R is the characteristic 
linear dimension of the plate, v, and o are the characteristic velocity amplitude and 
oscillation frequency of the plate, p and Y are the density and the kinematic viscosity of 
the fluid, and Re = v,,RIv and Sh = Rolv, are the Reynolds and Strouhal numbers, We shall 
assume that the condition 

is satisfied. 

Re-x <Sh-'I*< 1 (1.1) 

The condition establishes a relation between the orders of magnitude of the thickness of 
the oscillating boundary layer, the dimensions of the eddy domain in the vicinity of the sharp 
edges, and the dimensions of the plate /l/. Outside small domains of essential eddies the 
motion of the fluid will be assumed to be a potential one. 

We represent the velocity potential of the fluid in the form Q, (r, t) = cp (r) cm at, where 
r is the position vector of a point and t is the time. 

We have the boundary condition @/an = Tu,(r) on the surface of the plate. The "minus" 
and "plus" signs correspond to the "positive" and "negative" sides of the plate, which is 
assumed to be infinitely thin and n denotes the outer normal unit vector. 
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Under the above assumptions, the drag coefficient can be defined as follows /l/: 

CD = k SW:, k = V43 (Re) Z (u,) (j.2) 

(1.3) 

In general, this definition corresponds to the generalized drag force Q = --‘l,c~pv,~ Re 
I cos wt 1 co.9 ot acting on the plate. In (1.3) 1 denotes the boundary countour of the plate 
and the VIC can be computed as follows: 

where r is the distance measured in the tangent plane along the outer and the inner normal 
vector to 1 in the former and the latter formula, respectively, and where n denotes the chosen 
positive normal unit vector to the tangent plane. In (1.2) B(Re)- 2 + 0 (Re-"9) for large 
Reynolds numbers /l/. Other experimental data /3, 4/ and computations by the method of dis- 
crete vortices confirm (l-2), but do not enable one to improve that relation. 

Since, according to (l-l), the domains of essential eddying are small, the problem of 
determining the form df'the oscillations of the plate can be solved independently to a first 
approximation if the plate is elastic. We shall assume that this problem is solved and v,(r) 
is known. Then, to determine the drag, we have to find the harmonic function rp from the 
given boundary condition and compute the VIC on the contour of the plate. Exact and approxi- 
mate methods for solving that problem will be considered below. 

2. l&r& solutions of the p&me probtem. We denote by w(z) = u - iv the velocity func- 
tion of the absolute flow of the fluid in the complex plane z = xi_ iy. 

We consider the oscillations of a flat plate for a given curve representing the velocity 
distribution v,,(z) on the plate (Fig.lal . Applying a Cauchy-type integral, we get 

where g(z) = (2% -a")" is the analytic branch determined by the condition g(z)/z+l as /z I-_, 
w. Computing the VIC by means of (1.4), we find that 

(2.2) 

For translational oscillations with v,,(z)== v,, we find from (2.21 thatK,&u)= u,(n@. 
In the case of rotation about the central axis with v,(x)= v,xia we have K, (-&a) = &'izvo (na)". 
Since the problem is linear, it follows that, using those two expressions, one can write the 
VIC as a superposition for arbitrary oscillations of the plate as a rigid body. In particular, 
for angular oscillations about the left edge with u,, (x) = a0 (1 $- x/a), we have K, (a) = V,v, (~a)” 

and K, (-a) = ‘i,v, (~a)“. For elastic oscillations of the form v, (I) = v,, (~/a)~ we find from 
(2.2) that K, (+) = */,v, (~a):$. 

To determine the drag per unit length of the plate 
in the case of the plane problem, we shall replace the 
integral (1.3) by the sum I (u,,) = X ~K,~‘(Rv,,~)I‘~* over all 

_&r ~~~ 

sharp edges. For example, in the case of rotation about 
the central axis, Z (v,,) = 2 (n/ciy/*, k = 3 (n/4)"* = 2.17 in 
(1.21, and the drag moment 

The method for taking into account any singularities 
C 

Y 
in the fluid (sources, vortices, etc.) is well-known 151. 

I : :: ,x The problem can be solved independently when the plate is 

-ci D a assumed to be at rest. In this case, if there is a source 
q and a vortex y at zO then 

Fig.1 
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Hence, computing the limit (1.4), we get 

K, (*a) = (na)" Im [a (zO* - ~~)%/(a r z,)l (2.3) 

Expression (2.3) can be used as Green's function to find other solutions, in particular 
to find (2.2). 

We shall consider a periodic system of parallel plates undergoing the same form of oscil- 
lations lFig.lbf .The function c y_ f(z) = th(nz;d)has period id and transforms the strip --d/2 < 
y<dl2 in the s-plane into the whole 5 -plane with a cut along the real axis, i.e., it reduces 
the problem to that considered above. Using (2.1) and taking the properties of conformal 
mappings into account, we find that 

g(E) = [Se - th% (naiiJ)jx, t (1) = th (~~~~) 

Evaluating the limit (1.4), we get 

If a.'d<< 1, then (2.51 can be reduced to (2.2). In the case of translational oscil- 
lations with L.,,(x)=v~ the integral in (2.5) can be computed using the theory of residues: 

K,, (.+a) -= q, [d th (na/d)l W (2.6) 
Formula (1.2) for determining the drag is applicable in this case provided the condition 

(1.1) is satisfied not only for R = a, but also for R = d. For small d/a the lower 
limit of admissible Strouhal numbers should be increased. 

We consider a periodic system of coplanar plates undergoing the same form of oscillations 
(Fig.lc). We use the function 5 =f(a)= itg(nz/d) of period d, which transforms the strip 

-d/2 < z <: di2 in the E-plane into the whole 6 -plane with a cut along the real axis. In 
the case in question the results can be obtained from (2.4)-(2.6) if the hyperbolic functions 
are replaced by the corresponding trigonometric functions. Then, by analogy with 12.6), 
Kv (_+z) = ua [d tg (naid)l’/ for v, (z) = v, and it becomes obvious that the relation also holds 
for a plate oscillating in a flat channel -dl2< x<d/2 with rigid walls. The drag on the 
plate in the channel exceeds that in an unbounded fluid. For small gaps, (1.2) is applicable 
if (1.1) is also satisfied for R = d/2 - a. 

As an application we consider the oscillations of a plane with ribs covered by an 
unbounded fluid later. It is assumed that the ribs are uniformly distributed and perpendicular 
to the plane, and they have the same height a. It is obvious that the VIC can be determined 
by means of (2.61. The energy spent on forming vortices during a single oscillation period 
per unit length L and unit width 1 of the plate can be written in the form /l/ 

E/&Z) = B (Re)Sh-"'$pu&z f(n/d)~(a~~~/~,r)-',rl (2.71 
We find from (2.7) that, for a given height of the ribs, the drag will reach its maximum 

for dla = 1.93. It turns out that the dependence of the drag on the distance between the ribs 
is weak. At the end-points of the interval 1 <din< 3 it is only 10% less than the maximum. 

Using the Keldysh-Sedov formula /5/, one can obtain closed expressions for the VIC's by 
considering the oscillations of a system consisting of a number of coplanar plates. 

Because of the mathematical analogy between plane problems of hydrodynamics and the 
compound displacement in the theory of elasticity noted in /6/, an analogy between the VIC's 
and the SIC AI,, for the longitudinal displacement can be found /7/. 

3. Exact solutions of the spatial prwbkm. We consider the oscillations of a flat plate 
in an unbounded fluid. We introduce an xyz 
axes lie in the plane of the plate. 

orthogonal coordinate systemsuch that the y and a 
It is obvious that the velocity potential is antisym- 

metrical about the X=0 plane, and so the problem can be stated for a half-space: for 
5 = o,acpiaz = u, (y, 2) in the domain S inside the contour of the plate and g, = 0 outside S. 
Exact solutions of the problem are available for circular or elliptic domains S. The general 
solution for a circle of radius a has the form /8, 9/ 
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Evaluating the limit (1.4), we get 

(a’ - &* - ‘I*)% un (E. 11) 4 dtl 

(ncos0 -_f,* +(a sin 0 -n)* (3.1) 

where 9 is the polar angle. For translational oscillations with v, (I/,z) = I+, and angular 
oscillations about the z-axis with v,(y,z) = v,yia, it follows from (3.1) that /7/ 

K, (0) = 2~9, (ahc)~, K, (0) = */,v, (a/n)% cos 8 (3.2) 

respectively. We can now write down the expression for the VIC for any form of oscillations 
of a circular plate as a rigid body. 

For oscillations about the diameter, using K, from (3.2) and evaluating the integral 
(1.3), we find that Z(vn) = 1.31. The resulting drag moment will be 

M = ---‘/,~~p8%~~ eos ot 1 cos ot 

cD = 0.92Sh'a, 9' = v,la 

The above problem for a harmonic function in a half-space plays an important role in 
crack mechanics /9/. On the boundary z = 0 of the half-space the velocity potential 
corresponds to the x-displacement to within a multiplicative constant and the normal com- 
ponent v,(y,z) of the velocity corresponds to the normal load P (Y? 4 on the surface of 
the crack. The correspondence is no longer valid inside the media, but the breakaway SIC Kr 
can also be computed from (1.4), and so K, = KI for p (y, z) = -v, (y, z). This makes it 
possible to use the solutions for a flat crack or a system of coplanar cracks. Some closed 
expressions for the SIC KI for an elliptic domain S are given ih /7/. As a result of the 
established correspondence, the expressions are also valid for the VIC. In the remaining 
cases one has to resort to approximate or purely numerical methods. 

4. Application of the BEM. Using the method of weighted residues /lo/, we can write 

where Q is the domain occupied by the fluid, r1 is the boundary on which the normal component 
aTtan = V, of the velocity is given, I'2 is the boundary on which the values of the potential 

cp=f are given, and n is the outer normal unit vector to r = rl + rz. As the weight func- 
tion w in (4.1) we take the fundamental solution of the equation 

vbei = as,iae (4.2) 
on the right-hand side of which there is the derivative of the Dirac 6 function at the 
point i in the direction e. Applying the integration-by-parts formula twice to the left-hand 
side of (4.1) and using (4.2), we get 

Here y, is one of the sides of that part of r both sides of which, namely, the "positive" 
side yl+ = y1 and the 'negative' side yr-, interact with the fluid. cp+and r+_ are the values 
of the potential on yrf and yr- respectively. It is assumed that there are riqid bodies 
with surface ye and infinitely thin plates with surface Yr+ + Yr- in the fluid and r = yr+ + 
?I- + Yz. The integral over '?I++ YI- on the left-hand side of (4.3) vanishes, since the 
normal velocity is continuous. If all the boundary conditions are known, the velocities u,* 
of the fluid can be determined from (4.3) (the former index indicates the direction, while 
the latter indicates a point within the domain). 

The system of equations of the BEM can be obtained as follows. The boundary n+ Yz of 
the domain is divided into N elements. In the simplest case the functions ~1 = (cp, - cp- on 
yr and.cp on yc) and adan are assumed to be constant and equal to uj and v,,~ on the j-th 
boundary element (BE), i.e., the piecewise constant approximation is used. The weight func- 
tion w,,~ at the centre of the j-th element, n being the outer normal vector to the boundary, 
can be defined in accordance with (4.2), and Eq.(4.3) can be written for each BE. As a result, 
we arrive at the closed system of linear algebraic equations 

(4.4) 
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since N of the 2N quantities ui and v,,(J' = 1, 2, . . ., N) are determined by the boundary 
conditions. 

Here rj is the boundary of the j-th element and the BE's are numbered in such a way that 
the first M elements belong to YP and the other ones to yl. The singular inteqrals in (4.4) 
can be understood in the sense of the main value and can be defined as the limits as i 
approaches the boundary along the normal line from the interior of the domain occupied by the 
fluid. 

The approximation adopted above does not ensure that the solution is accurate near the 
sharp edges. Therefore, to obtain admissible values of the VIC's, we can use their connection 
with the kinetic energy /l/, which can be expressed in the form 

V~'a~~a~ = p j KD2dL (4.5) 

Evaluating the generalized associated mass n for a plate whose dimensions along the 
normal line to the contour in the tangent plane are changed by An, weobtain an estimate for 
dplh and the integral in (4.5). It turns out that the estimate is not worse than the 
value of n. Moreover, the error in computing I_I can be substantially reduced by applying the 
non-linear Shanks transformation /ll, 12/ 

if it is possible to carry out the computations to obtain a few values pl, ms and p3 on 
geometrically similar grids, starting from a crude division into BE-s. 

As in the case of the plane problem with K,,(Z) = con&, only one parameter can be 
determined from (4.5). Even though the numerical values of the VIC's determined from (1.4) 
are characterized by a large error, they give a true picture of the changes of K, (1) along 
the contour of the plate and reduce the problem to a single parameter, which can be found 
from (4.5). Such a procedure can be applied to a part of the contour, e.g., to one of the 
sides of a rectangular plate. 

We remark that in a number of cases (4.5) provides a convenient method for the analytic 
determination of the VIC's. We shall demonstrate this point using as an example the oscil- 
lations of a circular plate about its diameter, which were considered above. In this case 
it is obvious that K,(6) = Coos6 and the associated moment of inertia of the fluid J= 
(16,'45) pa5 /13/. Substituting J and K, into (4.51, we find that C = 4/~,8'(asin)%. 

5. A%mericaZ s&_&ion of pZane problems. The FEM and BEW applied to bounded domains 
occupied by a fluid are equally effective. In the case of the FEZ4 the matrices have large 
dimensions, but they are band matrices. For the BEM, reduction to a one-dimensional problem 
is feasible, the matrices have lower dimensions, but they are completely filled. For an 
unbounded domain occupied by the fluid, it is better to use the BEW. Since it is well-known 
how to apply the FEM in hydrodynamics /14/, in the sequel we shall consider only the algorithm 
of the BEM. 

We introduce orthogonal coordinate system xg and @J connected with the i-th and j-th 
BE's, which are straight intervals approximating the contour 2 (Fig.2a). R will denote the 
position vector relative to the centre of the i-th BE, 0 will be the angle between R and the 
n axis, and 4. will be the angle between the x and '1 axes. From (4.2) we find that 

The integrals of the functions (5.1) appearing in (4.4) can be computed analytically: 

(5.1) 

(5.2) 

The notation used in (5.1) and (5.2) is explained in Fig.2, Eqs.14.4) and relation 
(5.2) provide a very efficient algorithm for solving the plane problem for an arbitrary domain 
and can easily be turned into computer programs. 

As an example we present the computation for the oscillations of a plate with a cut of 
the form of the arc of a semicircle in the plane of symmetry (Fig.2b) in an unbounded fluid. 
Taking the symmetry into account, we divided a half of the arc into BE's. In the computation 
of the VIC from (4.5) the variation of the angle half-measure of the arc was iO.01. The 
results are presented in Table 1, in which the corrections following from formula (4.6) are 
given in brackets. Comparing the results with the analytic solution IJfpaz)= %I2 and K,Y&~,")z:: 
712, we can see that, using a small number of BE's, one can obtain sufficiently accurate 
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values, which is important when solving spatial problems. 

b 

IY 

Fig.2 

Let us consider the problem of the damping of the oscillations about the longitudinal 
axis of a circular cylindrical container with a flat bottom filled with a fluid in the 
presence of uniformly distributed radial dividing walls (Fig.3). In /15/, in which the 
general problem of the motion of a rigid body with a cavity containing a fluid of small 
viscosity was considered, the walls of the cavity were assumed to be fairly smooth. The 
concept of a boundary layer is not applicable in the vicinity of a sharp edge. If the 
characteristic dimensions of the cavity are of the order of I m, the order of the vortex 
damping connected with the flow past the sharp edges does not exceed the damping caused by a 
boundary layer near the walls. 

a b 

Fig.3 

Let R be the radius of the cavity, b the width of the dividing walls, H the depth of 
the fluid and 0 the amplitude of the angle of rotation about the longitudinal axis. Setting 
"0 = Ill&l and taking into account that the flow past any of the walls has'the same character, 
we can represent the dependence of the decrement of the oscillations in the form 

where N is the number of walls, I is the associated moment of inertia of unit layer of the 
fluid, and I, is the moment of inertia of the container without the fluid. 

We shall present the solution of the problem by the FEM. Taking into account the sym- 
metry of the cavity, we carried out the computations for a single sector. Up to 2000 linear 
triangular elements were used. The resulting values of I were in agreement with those given 
in /16, ll/. The results of determining the VIC's are represented in Fig.3a by a number of 
lines. The digits written next to those lines indicate the number of dividing walls. Using 
these relations in (5.3), one can choose the width and the number of walls necessary to 
ensure the required damping. 

Let us present a comparison with the experimental data obtained by Churilov for a cavity 
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with R = 0.35m, b/R = 0.3, and Id(pHR’)- 0.884. In this case the theoretical relations (5.3) are 
represented in Fig.3b by a number of lines. The maximum damping was obtained in the case of 
6 walls. In the case of 4 and 8 walls the damping is practically the same and is represented 
by a single line. The experimental results are indicated by the circles in the case of 2 
walls and by the dark circles in the case of 4 walls. The agreement between the computational 
and experimental data is good in the case of 2 walls. For a cavity with 4 dividing walls 
the computational lineliesmuch higher, which may be connected with the influence of the free 
surface of the fluid as well as large-scale vortices appearing for large amplitudes of the 
oscillations. If the width of the dividing walls is small, blR<O.S, the results of the 
solution of the problem concerning the oscillations of a plane with ribs covered by an 
unbounded fluid layer can be used. 

Table 1 

Table 2 

6. Solution of the spatial problem by the BEH. We introduce orthogonal coordinate systems 
XYs and gqc with origins at the centres of the i-th and j-th BE's such that the x and 5 
axes are directed along the corresponding normal lines. It follows from (4.2) that 

1 I aw,i=- dR 
luni = - -4~ ~, 

an ‘W7li T on rj 

Below we shall restrict ourselves to considering the oscillations of a flat plate in an 
unbounded fluid. In this case the surface Y: is not present (M = 0 in (4.4)) and the 
integral 

for triangular and rectangular piecewise-constant BE's can be easily evaluated in an analytic 
form in the cylindrical coordinate system ZI+ connected with the point i. 

For a rectangular plate with sides of length 2~ and 2b (a>bl we studied the translational 
oscillations perpendicular to the plane of the plate. The computations were carried out for 
one quarter of the plate. Up to 256 BE's were used. Relations (4.5) and (4.6) were used to 
determine various quantities. 

For the sake of presenting the results we find it convenient to introduce the associated 
mass coefficient e,= @(ZapPa) and the drag coefficient E== c,RVS = kI Sh'/a (Sh = bolv,) per unit 
area S. Here, according to (1.2), k== kRVS. 

We list in Table 2 the values of e, obtained by the BEM and from an empirical formula 
/18/ that approximates the experimental data, as well as the values of kx obtained by the 
BEM. The computational and experimental values of C, are in good agreement. For a plate 
of infinite length (a- s),c,,, = I and k== 6.9. The shorter the plate the lower the values of 
cm and kx, and, for a square plate, the values reach the level of 58% and 66% of the limiting 
values, respectively. The dependence of K, (1) on the lengths of the sides of the plate can 
be found in /7, 19/ if one takes into account that K,lv,= -KIIp. 

We studied the oscillations (rotations) of the plate about the middle line parallel to a. 
Up to 256 BE's per one quarter of the plate were used. The dependence of K.(t) along the 
sides of a square plate obtained by the BEM is shown as an example in Fig.4a. The solid line 
corresponds to the parallel rotation axis and the broken line to the perpendicular rotation 
axis; 1 is measured from-the middle of the corresponding side. For a plate of infinite 
length we obtained K,., = V,(nb)‘~. 

We express the moment of the drag force in the form 
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Wbeing the angular velocity amplitude, Here co = kR Sh'/*, ke = kbal.9, and the coefficient k can 
be determined from formulae (1.2) and (1.3), in which we set R= b, v0 = bo6= W and, con- 
sequently, Sh-I-= t). We can express the associated mass coefficient in terms of the associated 
moment of intertia Jo of the fluid by the formula 

c,,, = SJf/(npb*a). 

Below we given c,, and kg for some values of the ratio of the sides of the plate: 

sib 0.25 2 4 

cm 0.455 &%3 k310 0,8B8 0.%5 
ke 0.830 0.884 O.Y60 1.012 1 a43 

For a plate 
k, = 1.087. 

of infinite length, Jf =npb4/8 and k = 2.174, which corresponds 

a d 6 
LZ 8.3 

0.8 0.2 

0.4 Ii? 

0 
u 

0.5 0 0.m 8 

b 

to C”1 = 1 and 

Fig.4 

7. ExperinentaZ investigations of the drag for the oseiZlations of rectangular p2ates. 
Experimental tests were carried out for rectangular plates in air. A square plate with sides 
I = 1.35 m and a rectangular plate with sides 1, =0.5m and In= 1.85 m made from AmG-6 sheet of 
thickness 1.5 mm were chosen. To eliminate bending deformations, the plates were strength- 
ened by a 7 mm high trapezoidal profile, but the regions up to 90-100 mm apart from the edges 
were left free. The plates were hung vertically in such a way as to minimize the influence 
of the friction of the suspension, which was eliminated anyway at a later stage by carrying 
out special additional tests. By changing the springs, we were able to change the oscillation 
frequencies in different series of tests from 0.39 Hz to 1.3 Hz. By measuring the force by a 
dynamometer attached to one of the springs, we registered free fading oscillations of the 
plate in suspension. From the oscilloscope record we worked out the dependence of the 
logarithmic danping decrement on the amplitude of the oscillations. 

The dependence of the decrement on the amplitude represented using the logarithmic scale 
indicates that the experimental data lie on a straight line, except for amplitudes less than 
2-4 times the thickness of the plate, for which the error of the measurements becomes large. 

This suggests that the decrement depends exponentially on the amplitude. Values between 0.65 
and 0.77 were obtained for the exponent in the case where Its theoretical value was 2/3. From 
the known dependence of the decrement on the amplitude of oscillations one can compute the 
drag coefficient. To this end the generalized mass p was also determined in the experiments. 

For the oscillations of the square plate in the direction perpendicular to the plane of 
the plate, the experimental results concerning the dependence of the decrement 6 (the dots) 
and the resulting dependence of the drag coefficient C, (the broken line) on the relative 
amplitude of oscillations All= v,/(d) are shown in Fig.4b. The solid lines indicate the 
computational results. The theoretical dependence of cy corresponds to the value of k for 
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a/b= 1 in Table 2. The decrement of the oscillations can be computed from the formula 6= 
D Sh-"3 with D = B (&)I (IT,,) pRVp, Sh = oRlv, = R/A, and R=l /2/. Here we set p=i.293 kg/m" 
(air) and p = 11.74 kg. The mass of the plate along with the associated mass u of the air 
were determined experimentally. The decrement can be computed from the drag coefficient 
using the relation Dlk, = 4pRS/(3p). 

Analogous results for the rectangular plate are presented in Fig.4c: In this case the 
theoretical functions were obtained by linear interpolation from the values of k= for Jb= 3 
and alb= 4 listed in Table 2 and for p= 7.355kg. 

In our experiment we realized angular oscillations of the square plate about the axis 
passing below the upper edge at a distance h=65 mm. In Fig.4d the experimental dependence 
of the decrement of the oscillations on the amplitude of the angle 8 is represented by the 
circles, and the computational dependence is represented by the solid line. The moment of 
inertia of the plate taking the associated mass of air into account amounts to J= 4.627kg m'. 
The values of the VIC's on the edges of the plate that are necessary for the computations 
were obtained using the superposition principle: 

R=l-h 

where A.1 and &.a are the VIC's obtained in Sect.6 for the translational oscillations.and 
the angular oscillations about the middle line. The characteristic dimension a=112 is 
used. Hence, if we set vO= Roe, then D = B (Re)pa3R*I (0,)/J and Sh = o&, = d(RO) in the 
equation 6 = D Sh-"0 for the decrement of the oscillations. Computations based on formula 
(1.3) yield I (17,) = 2,935. 

It is seen that in all cases the agreement between the computational and experimental 
data is satisfactory. 
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